Early Palaeogene siliceous microfossils of the Middle Volga Region: stratigraphy and palaeogeography

Irina E. KHOKHLOVA & Tatiana V. ORESHKINA

Geological Institute, Russian Academy of Sciences, Pyzhevsky per. 7, Moscow, 109017 (Russia) khokhlova@ginran.msk.su oreshkina@ginran.msk.su

Khokhlova I, E. & Oreshkina T, V. 1999. — Early Palaeogene siliceous microfossils of the Middle Volga Region: stratigraphy and palaeogeography, *in* Crasquin-Soleau S. & De Wever P. (eds), Peri-Tethys: stratigraphic correlations 3, *Geodiversitas* 21 (3): 429-451.

ABSTRACT

The Sengiley section (Middle Volga Region, Russia) provides one of the most complete late Palaeocene sedimentary sequence with well-preserved diatoms, silicoflagellates, and radiolarians. Three zones of regional zonal scheme (Kozlova 1994) based on radiolaria were distinguished in the sediments: Buryella tetradica, Tripodiscinus sengilensis, Petalospyris foveolata zones. Based on diatom regional scheme (Strelnikova 1992) Trinacria ventriculosa and Hemiaulus peripterus zones were recognised. Although assemblages of siliceous microfossils strongly differ from the oceanic coeval associations, the precise age of the boreal zones was determined on the basis of direct correlation with standard zonal scales of diatoms, silicoflagellates and radiolarians. For example, from sediments of Petalospyris foveolata zone, several species described by Nishimura (1992) from the upper part of the Bekoma campechensis standard radiolatian zone of the North-West Atlantic were found and allowed us to correlate these two zones. Two zones of the standard oceanic diatom scheme (Barron & Baldauf 1995) (Hemiaulus peripterus and Hemiaulus incurvus zones) and standard silicoflagellate Naviculopsis constricta zone were distinguished in the Sengiley section, Siliceous-terrigenous Palaeogene sediments of the Middle Volga can be considered as typical sediments of the marginal epicontinental basin. Siliceous assemblages of the Sengiley section are very close to assemblages from Lulinvort and Serov fotmations of the West Siberia and the eastern Urals slope, Fur Formation and Sambian Formation of North-East Europe, although the geometry of connections between these basins during late Palaeocene is still not clear.

KEY WORDS Palaeogene, biostratigraphy, radiolaria, silicoflagellates, diatoms, Middle Volga, East European Platform.

RÉSUMÉ

Microfossiles siliceux paléogènes de la région de la moyenne Volga : stratigraphie et paléoécologie.

La coupe de Sengiley (région de la moyenne Volga, Russie) présente une des séquences sédimentaires les plus complètes du Paléocène supérieur avec des diatomées, radiolaires, silicoflagellés bien conservés. Trois zones de la zonation régionale (Kozlova 1994), fondée sur les radiolaires, sont distinguées dans les sédiments : zones à Buryella tetradica, Tripodiscinus sengilensis, Petalospyris foveolata. Dans la zonation régionale à diatomées (Strelnikova 1992), les zones à Trinacria ventriculosa and Hemiaulus peripterus sont reconnues. Bien que les assemblages à microfossiles siliceux différent fortement des équivalents océaniques, l'âge précis des zones boréales a été déterminé sur la base de corrélations directes avec les échelles régionales standard à diatomées, silicoflagellés er radiolaires. Par exemple, pour les sédiments de la zone Petalospyris foveoluta, plusieurs espèces décrites par Nishimura (1992) dans la partie supérieure de la zone standard à radiolaires à Bekoma campechensis du Nord Ouest de l'Atlantique ont été trouvées er nous permerrenr de corréler ces zones. Deux zones de la zonation océanique standard à diatomées (Barron & Baldauf 1995) (zones à Hemiaulus peripterus and Hemiaulus incurvus) et la zone standard à silicoflagelles à Navienlopsis constricta ont été trouvées dans la coupe de Sengiley. Les sédiments paléogènes siliceux-terrigènes de la moyenne Volga peuvent être considérés comme typiques de hassin marginaux épicontinenraux. Les assemblages siliceux de la coupe de Sengiley sont très proches des assemblages des formations de Lulinvort et Serov de Sibérie occidenrale er du versanr est de l'Oural, des formations de Fur et Sambian du Nord Est de l'Europe, bien que la géometrie des connexions entre ces bassins durant le Paléocène ne soit pas clairement établie.

MOTS CLÉS Paléogène, biostratigraphy, radiolaires, silicoflagellés, diatomées, Moyenne Volga, Plate-forme est-européenne.

INTRODUCTION

In the Ulyanovsk-Saratov syncline of the Middle Volga Region (Fig. 1) widespread early Palaeogene sequence (approximately 300 m thick) is represented by marine siliccous-terrigenous deposits with high facies diversity. Previous stratigraphic subdivision of Palaeogene sequences was based in most cases on the lithological data. The age of these subdivisions and relations between them have been revised by different investigators more than once (Milanovsky 1940; Leonov 1961; etc.). The high abundance of siliceous facies, opokas (kryptogene siliceous deposits), the diatomites, siliccous clays and sands offer advantage for siliceous microfossils study.

Fig. 1. - Location of studied Sengiley section.

FIG. 2. — Lithology and lithostratigraphy of the Sengiley section, stratigraphic ranges of siliceous microfossils, and zonation. Schemes of StreInikova (1992) (diatoms), Locker & Martini (1987) (silicoflagellates) and Kozlova (1994) (radiolarians) were used.

This paper seeks to examine the evidence provided by siliceous microfossils – diatoms, silicoflagellates and radiolarians which occur in the Sengiley section. Study of siliceous microorganisms from this section is very crucial for precise age determinations of Palaeogene sedimentary cycles and for revealing conditions of silica accumulation on the northern Peri-Tethyan margin. The problem of relations between these early Palaeogene biosilica accumulation events and regional and global geological events is also of great interest.

SENGILEY SECTION

The Sengiley section (Figs 1, 2) is located 7 km north-west of the Sengiley (Ulyanovsk Region). On the right bank of the Volga River, at an elevation of approximately 300 m above sea level, a section of 40 m high cliff so-called "Granoe Ukho" was studied. Up to the section the following lithological units were distinguished in the studied interval:

- at the river bank below the cliff siliceous grey clays of 7 m thickness; no microfossils found.

- siliceous dark-grey sandstones, thin-layered, with silica clays lenses, lie at the base of the diatomite cliff; thickness 4-4-5 m; no microfossil found.

- white massive diatomites with layers of lightgrey diatomites, sometimes with glauconite; thickness 22 m; in samples 930109-930072 abundant siliceous microfossils were found.

 light-grey massive clayey diatomites lying conformably on the underlying unit; thickness 7 m; samples 930072-93057 contain abundant siliceous microfossils.

- the unconformity separates the diatomite units from overlying sediments; they are represented by sandy brownish-green clays, siliceous greenishgrey sands, brownish sandy opokas, silica darkgrey opokas; thickness about 11 m. Microfossils were not found.

PREVIOUS STUDY OF SILICEOUS MICROFOSSILS

Zonal subdivision of the Sengiley section on the basis of radiolarians has been proposed by Kozlova (1984). The age was considered as late Palaeocene. Radiolarian zones of this scheme are undoubtedly regional and can be traced in the boreal epicontinental Palaeogene of the Volga and Ural regions.

The study of diatoms of the Middle Volga Region was started in 19th century by Ehrenberg (1854), Grunow (1884) and Witt (1896). Later, diatoms and silicoflagellates from this location have been studied by Leonov (1961), Jousé (1979, 1982), Gleser (1993, 1995; Gleser *et al.* 1977) and Strelnikova (1990, 1992). The lower part of the diatomite unit is certainly related to the Palaeocene by all investigators, but an early Eocene age is still nor excluded for the upper part of diatomites. Silicoflagellate assemblages from several separated samples from the Sengiley section were studied and dated by Locker & Martini (1987) as early Eocene.

MATERIAL AND METHODS

Samples were collected during a field trip of

Russian Academy of Sciences Geological Institute in 1994. 81 samples were examined for diatom and radiolatian biostratigraphy, but siliceous micro-organisms were found only in 55 samples from the diatomite units of the section. Sampling interval was approximately 50 cm.

Approximately 5 g of sample was crushed mechanically and placed into an 400 ml beaker. Then samples were processed by 15-minutes boiling in hydrogen peroxide. The procedure of repeatedly filling and decanting the beakers with distilled water and allowing 2 hr settling was used to remove chemicals and clay minerals.

Slides for radiolarian study were prepared on 24×24 mm cover glasses and mounted in Canadian balsam on 24×80 mm glass slides. Radiolarians were examined at $\times 400$. Species were recorded as abundant (A) if more than 10 specimens were present in the slide, common (C) if 3-10 specimens occurred in the slide and rare (R) if 1-3 specimens were found.

Strewn slides for diatoms were prepared by sampling the suspended residue with a pipette spreading it on 18×18 mm covet slide and mounting in Elyashev mounting medium. Diatoms were examined at \times 500. Species identification was checked at \times 1250. Some samples were studied in SEM "Cambridge Stereoscan" microscope. Relative abundance of taxa represented in the range chart is reported as abundant (A) when 20 specimens are present in one horizontal traverse at \times 500, common (C) when 3-19 specimens are present at each traverse, few (F) – 1-2 specimens in each traverse, rare (R) – less than one specimen in each traverse.

STRATIGRAPHY

RADIOLARIA

Using radiolaria, the section was subdivided on the basis of the boreal zonal scheme of Kozlova (1994). The zonal succession is Palaeocene (Fig. 1, Table 1).

Buryella tetradica zone

The assemblage is moderately preserved and contains Buryella tetradica Foreman, Thecosphaera rotunda Borissenko, Spongotrochus puter TABLE 1. — Stratigraphic distribution of radiolaria in Sengiley section. A, abundant (20 specimens are present in one horizontal traverse examined at × 500); C, common (3-19 specimens are present at each traverse); F, few (1-2 specimens in each traverse); R, rare (less than 1 specimen in each traverse).

AGE									Z	ELANDIA	AN .							
ZÓNE	Bur	yella adica							Т	ipodiscii	nus sen	gilensis						
Species / sample number	109	108	107	106	105	104	103	102	101	100	99	98	97	96	95	94	93	92
Buryella tetradica	C	C	C	R										-	1			
Lophophaena curta			R	R	C	С	R	R										
Plectodiscus totchilinae				C	С	С	R	R										
Spongodiscus americanus			A	A	A	A	C			1	1					1		
Spongediscus philix			C	R	C	С	C	R			1	1				1		
Spongolrochus alveatus							C	С		R	1	R						
Spongotrochus sp. alt. Trochodiscus cleve							A	C					1					
Spongolrechus all. heijodes										A	A	A	A	A	A	C	С	C
Spongotrochus paciferus					R		R			R		R				_		
Spongolitichus pulér		С	С	C														
Thecosphaera rolunda		R	R	R	_										1			
Tripodisciņus sengilensis				С	С	С	C	С	R		R		R					
Tripodiscinus sibiricus		R	R	R			R	R	R	R	R	R	R					1
Tripodiscinus Milobatus						R	R								R			

AGE							ZELAND	IAN-TH	ANETIAN	ł								
ZONE		1000				125	Tripodi	scinus s	igilensis	-								
species/sample number	91	90	89	88	87	86	85	84	83	82	81	80	79	78	77	76	75	74
Anthocyrtama frizzeli					R		R		1									1
Larnocalpis smlli						-				1	C	R	R			1	1	
Lophophaene curta							1					R				R		
Phormocyrtis reticula							1				С	R						
Plectouliscus totchillnae					С	R		1								1	R	
Spongorrochus alf. helioides	C	R	C	C														
Spongomelissa temaria					R	R						R	1					
Tropodiscinus trilobatus		_			С	С	С	R	C	R	R	R	R	R	R	R	С	
Tripodiscinus sengilensis		R			R													R

AGE		ZEL	ANDIAN-	THANET	IAN						TH	ANETH	IAN				
ZONE		Trip	odiscinu	s sigiler	isis						Petalo.	spyris fo	veolata				
species/sample number	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57
Acanthospheera sp.										C	C	С				1	
Botryorretra cona												C	R	С	Ī	R	
Clathrocyclas extensa										R		R					
Clathropycles lipmanii										R	R						
Clathrocycles longispina									A								
Diplocyclas contuta runjevae						С	R		R	A	R	С	С				
Diplocyclas pseudobicororo																	
pseudobicorone						R	C	С			R	С					
Perivialur (1) auminicas											R	R	R	1			
Petalospyris loveolala					1	R	R	С	C	C	C	R					
Spongastenscus crucitarus						R	B			С	R						
Spongomelissa ternaria							C					R	R	R		R	C
Spongomelissa numa numa						R	C					С					
Spongotroenus nativus praecox									A								1
Stylodyciya harlestonensis						1	R		R	A	-	R	C	R			
Tripodracinus trilobatus		R								R							

Kozlova, Tripodiscinus sibiricus Kozlova, Spongodiscus americanus Kozlova, Spongodiscus phrix Gorbovetz and Lophophaena curta Kozlova. The base of the zone was not observed in the section. The upper boundary is determined by the appearance of Tripodiscinus sengilensis Kozlova and Plectodiscus totchilinae Kozlova.

Tripodiscinus sengilensis zone

Radiolarians are abundant and well-preserved. The most common are: Tripodiscinus sengilensis Kozlova, T. trilohatus Kozlova, Lophophaena curta Kozlova, Spongotrochus paciferus antiquus Kozlova, S. aff. Trochodiscus člevel (Kozlova), S. aff, helioides Cleve, Spongodiscus americanus Kozlova & Gorbovetz and Plectodiscus tochilinae Kozlova. Sponotrochus alveatus Riedel & Sanfilippo, Tripodiscinus sibiricus Kozlova, Stylodiciya charlestonensis (Clark & Campbell), Anthocyrtoma frizzeli Nishimura and Periviator(?) dumitricae Nishimura occur rarely. Common Larnocalpis smili Middout and Phormocyrtis reticula Kozlová & Gorbovetz were found in the upper part of the zone. The upper boundary of the zone is very sharp and determined by the appearance of Petalospyris foveolata Ehrenberg, Diplocyclas cornuta runjevae Kozlova, D. pseudubicorana pseudobicorona Nishimura, Spongomelissa numa numa Kozlova, Clathrocyclas longispina Clark & Campbell and Spongotrochus nativus praecox Kozlova,

Petalospyris foveolata zone

Radiolarians are diversified and well-preserved. The most abundant are: Petalospyris foveolata Ehrenberg, Dyplocyclas cornuta runjevae Kozlova, D. pseudobicorona pseudobicorona Nishimura, Antocyrtoma frizzeli Nishimura, Botryometra osha Kozlova, Spongomelissa ternaria Kozlova, S. numa numa Kozlova. In the lower part of the zone Clathrocyclas longispina Clark & Campbell, and Spongotrochus nativus praecox Kozlova are abundant. Spongasteriscus cruciferus Clark & Campbell, Clatrocyclas extensa Clark & Campbell and C. lipmanii Kozlova are rather rare.

DIATOMS AND SILICOFLAGELLATES

Pronounced taxonomic changes in diatom assemblages observed in the middle part of Sengiley diatomites (Fig. 1, Table 2) allow us to distinguish from the base and upsection two zones of the zonal scheme for the Northern Hemisphere *sensu* Strelnikova (1990, 1992).

Trinacria ventriculosa zone is represented by common Triceratium mirabile Jousé, Trinacria ventriculosa (A. Schmidt) Gleser, Pyxidicula ferox (Greville) Strelnikova & Nikolaev, Grunowiella gemmata (Grunow) Van Heurck. The assemblage of the Hemiaulus proteus zone consists of Hemiaulus incurvus Shibkova, H. proteus Heiberg, H. incisus Hajos, H. frigidus (Grunow) Fenner, Soleum ex-sculptum Heiberg, Triceratium beibergii Gombos, Craspedodiscus moelleri A. Schmidt, Aulacodiscus suspectus A. Schmidt, Grunowiella palaeocaenica Jouse and Cylindrospira simsi Mitlehner.

Besides the stratigaphically important species enumerated above, diversified representatives of the neritic diatom flora of epicontinental basins are present in both zonal assemblages. A full list is shown in the Table 1 and in the taxonomic appendix.

Silicoflagellates (about 10 taxa) are common throughout the whole section. For stratigraphic subdivision, the zonation of Locker & Martini (1987) is applied. The appeatance of members of the Navieulopsis genus (including N. constricta (Schulz) Frenguelli, N. robusta Deflandre, N. danica Perch-Nielsen) defines Naviculopsis constricta zone (upper Palaeocene-early Eocene). Corbisema disymmetrica Bukry is present throughout the whole section. According to Locker & Martini (1987), this stratigraphic interval cotresponds to the NP4-NP9 nannoplankton zones and so gives us the possibility to restrict the age of the diatomite unit by the Palaeocene. Less pronounced than diatoms one, change in taxonomic composition is related to the middle part of the section. This reconstruction includes the last appearance of Dictyocha elongata Gleser and the fitst appearance of Naviculopsis punctilia Perch-Nielsen.

PALAEOECOLOGY

Radiolarian assemblages are well preserved and, for the epicontinental setting, diversified (33 spe-

TABLE 2. — Stratigraphic occurrence	of diatoms and silicoflagellates in	in Sengiley section. Legend	I: see Table 1.

														1		1				1.00	-				0.5	
Diatoms/Samples	109	108	107	106	105	104	103	102	101	100	99	98	97	96	95	94	93	92	91	90	89	88	87	86	85	84
Aulacodiscus distinguendus								-		H		ļ	+		-		-		R	-		-			н	
Aulacodiscus probabilis			-				ļ		!	H	-						-	-	<u> </u>	-	6	н				-
Briggera sibirica	н		<u> </u>			н		F		H	н	H		н	H.		н	н	н	<u> </u>	<u> </u>					н
Costopyxis antiqua					-	_	R			H						-										
Eunotogramma variabile	R	R	R	R	R	R	R				R			R		H	R			н		H.	H	8	н	
Eunologramma weissil	F	F	F						R	C	1									1	L	L				
Grunowella gemmeta	C	A		C	A	A	C	C	C	<u>C</u>	F	C	F	F	F	C	C	F	F	C	C	<u>A</u>	<u>C</u>	C	A	A
Hemiaulus frigida	C	R	R	R	R	R	C	R	R	R	C	R	C	R	R	R	R	R	R	R	R	R	R	R		R
Hemiaulus ambiguus		-			1															1			-		F	R
Hemiaulus danicus			R	F	F	R			1	R				1		1						R				
Hemiaulus incurvus			1					1						1			I								R	
Hemlaulus rossicus			1		1		1						1	1		1									F	F
Hvalodiscus radiatus	R	R	F	R	R	R	R	F	R	R	R	R	R	1	1	R	R		R	R						
Kentrodiscus fossilis								-					1	1		I R	R		1					-	R	R
Lisitzina distanca		1					1				1	1	1	1							R	1	R	-		
Odonintrocis carinata	R	1	1	1	R	R	F	F	F	F	F	F	F	F	B	F	F	R	R	B	R	R	R	R	R	B
Odontotropis costata		<u>+</u>	1	1	+ • •			B	R	R	B	1	1		B		B		B	R	1	1	1	1		
Paralia crenulata		B		F			F			1	R	B	R	-	R	İR	R	R	B	B	1		1			
Paralia onuncusiu				· · ·		-	· ·	F	F	R	R	R	R	-	B	F	R	R	R	B	R	B	B	B	B	B
Paralia sulcala	R	F	B	F	B	R	F	- i	F	F	F	F	F	F	F	† F	F	F	F	F	1.	R		F		
Prohandie cratanea		F	F	E	F	F	E	E	F	F	F	F	F	F	F	F	F	F	F	F	B	R	R	B	B	R
Provising creating on 17	<u>_</u>	<u> </u>	-		1 1-		F	-		+- '		+ -	+			+ -				+	11	11	1 E			
Pseudopouosita sp. 2	D	E	D		-	D	D	D	B	- D	D		-	D	b	- D	1	B	D	D	E	E			E	E
Pseudopouosta wesa		- 5	I R		+		- n				<u> </u>	I n			10		D				B	Г	- D			P
Pseudosticioo scus arguiatus	H H	<u> </u>	H R	F	H	n	I R	n	<u> </u>	- n				n	-	n	n	<u> </u>	<u></u>	<u> </u>	<u> </u>		n	<u>n</u>		
Plerolneca major	H		0		+	-	H N	10		H N	-	+	-	F	-	-				1-		1-2-	F	-		n
Pyxiacula terax	0	0	0	C	0		0	C	U	C	F	F	F	F	F	1	F	F_	I- <u>5</u> -			Г	F			
Hattrayella oamaruensis		<u> </u>		 							-					4			I H	H.			н	-		
Rhaphoneis morsiana		1					<u> </u>						1			+	<u> </u>				-	-		H	-	-
Rhaphoneis simbirskiana					<u> </u>								-									1			н	
Rhizosolenia hebetata			R																	-						
Stellarima microtrias	F	R	F	F	R	R	R	F	F	F	F	F	F	F	F	F	F	F	F	F	F	1	F	F	F	F
Thalasslosin sp. 1				1			R		'		-						1		1		1	1	<u> R</u>			-
Thalassicsiropsis williana	C	C	C	C	C	C	C	С	C	C	C	C	C	C	C	C	C	C	C	C	F	F	C	C	C	C
Triceratium tios				1						R																
Triceratium kinken	R	R	F	R	R	R	R	R	R	R	F	F	I.E.	F	R	R	R	R	R	R	C	C	C	C	C	C
Trice atium mirabile	C	C	C	C	A	A	C	A	A	A	A	A	A	A	A	A	A	C	C	C	R	R	F	R	F	F
Triceranum Ventneulosum	F	C	F	F	C	F	F	F	F	F	F	F	R	R	F	R	R	F	F	F	R	R	F	R	R	R
Trinacna pileolus	R	B	R	R	R	R	R	R	R	R	R	F	R	R	F	F	F	F	F	IF	R					
Trochosiva solnosa			IR		R			R	1		R				R		1				R		R			
Silicollagellates			1	1									1				Î					1				
Corbisema disymmetrica	B	F	R	F	F	F	R	F	F	F	F	F	F	F	F	F	F	R	R	R	R	R	R	R	R	R
communis		· ·										1			150							2.3	1 -			
Corhisema hastata hastata	F	F	F	R	R	F	F	F	F	F	C	C	C	C	C	C	C	C	C	C	+		1		1	
Corbiserna hastata nanulata			1 in	1			+ ·-	+ •	+	1.						+ -	-		1		B	R	R	R	F	R
Corbisema inermis inservis	R	R	R	R	1	R	B	B	B	B	F	F	B	B	B	B	R	R	8	B	F	F	F	R	R	F
Dictorche elanoste		F		F	F	F		4	F	F	C	C	TC	1 C	1 C	C	C	C	1 C	C	F	F	R	F	R	R
Diotycona churgata	P	+	- B	F	1	1	P	1		+ -	B	P	10	1	10	P	R	B	1 é	B	B	B	B	R	R	B
Dictyound nous	n	-		+	+	+ .		-	-	P	B		P	B	+	+ 14	1	B	n	- A		R	1	1	R	R
May and a prevarenties	-	D	-	Ļ	-			-	-	+n	1	+ 13		In		-	18	n		- D	D	P	6	+	11	
Naviculopsis constricta	H	H	-	-	+	+	1	-		-	-	n	Б		-	D	1			18	1n	1n	n	-	-	+
Naviculoosis danica		-	-	1	-	-		-	1	1	10	0	H	1.0		H	0			n	0	-	-	0		
Naviculopsis robusta	, H	H		1	H			н		, R	H	H	1	I H		H	H		H	H	H	1		R	1	

Diatoms/ Samples	83	82	81	80	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57
Aulacodiscus distinguendus			R	R				R			R	12			R			R			R		1			-	
Aulacodiscus probabilis	R			R		R	R	R	R	R	R	F	F	F	-	-	R	1	R		R	1		R		-	B
Aulacodiscus schmidti		R			R				R	F							R	1	R				1			R	
Aulacodiscus suspectus										1	1	R	R	R	F	F	С	C	C	C	C	C	F	C	A	A	F
Briggera siblrica		F		R		R			R					R				R		1				1		R	
Craspedodiscus moelleri									1			F	F	F	F	F	C	A	A	C	A	A	C	C	A	A	F
Cylindrospira simsi																	R	R	R	C	1	-					
Eunotogramma variabile		R	R	R								<u> </u>						1	1			1	1			1	
Eunotogramma weissil				1		R				R	-												1	1			
Fenestrella antiqua										1	1	R						R					1				-
Grunowiella gemmata	C	С	C	F	F	F	R	F	F	F	F	F	F	F	F	F	F	F	F	C	F	F	F	F	F	F	F
Grunowiella palaeocaenica	-											R	С	С	С	С	C	Ċ	C	Č	C	C	C	C	C	Ċ	F
Hemiaulus ambiguus	R			R	1	R				R				R		B					1	1					
Hemiaulus arcticus			F	1		R			R		R		B		C	R	R	R	R	R	R	B	R	R	R	B	B
var. bornholmensis				1																							1.1
Hemiaulus curvatulus	-				1						-	1					F	B	B	F	F	F	F	F	F	R	R
Hemiaulus danicus														B	B		B	1	1		-	<u> </u>	-		B	B	B
Hemiaulus Irigidus	R	R	R	R	R		R		R		R				R			-	1				-				<u> </u>
Hemiaulus incisus			R	R	R	R	R	R	R	R	R	R	R	R	R	B	R	R	B	B	R	B	R	R	B	B	B
Hemiaulus incurvus			R	R															1		1	1				<u> </u>	<u> </u>
Hemiaulus proteus				F	С	С	С	C	C	С	C	C	С	Ć	C	С	С	F	A	A	A	C	A	A	C	C	F
Hemiaulus rossicus		R		R					-	-	1	1				_	R	R			-	-					<u> </u>
Hyalodiscus radiatus	R		R			R		R	R	R	F	R	B	R		B	F	B	R	B	R	F	B	R	B	B	B
Kentrodiscus fossilis	1		6									-						R			R	<u> </u>				<u> </u>	
Lisitzinia distanovli												1		B	B			B					<u> </u>				
Odontotropis carinata	R	R	R	R					R	R	F	F	B	F	R	R	B	B	B	R	R	F	R	F	B	B	
Odontotropis cristata													B		_		B				1	B				· · ·	
Paralia crenulata	R	F	F	C	C	C	F	F	R	R	F	R	R	R	R	R	R	F	B	B	F	R	H H	R	R	B	B
Paralia grunowii	F	F	R	F	F	F	F	F	C	C	C	R	R	R			R	R			-	R	R	R	F	B	B
Paralia sulcata	F	С	C	A	A	A	A	A	F	F	F	F	A	A	A	A	A	F	F	F	F	F	A	A	A	C	R
Proboscia cretacea	R	R	R	R	R	F	R	R	F	F	R	F	F	F	R	R	R	R	R	F	R	R	R	R.	R	R	B
Pseudopodosira sp. 2		F	F	R				-				-											R	B			<u> </u>
Pseudopodosira westi	F	F	A	A	C	C	С	F	F	R	R	R	R	R	R	F	R	R	F	R	B	B	R	B.	B	B	B
Pseudosticlopiscus angulatus		R	B	B		B	B		R	B	F	B	B	B	B	R	F	F	B	R	F	B	B	B	B	B	<u>+</u>
Pterotheca major			R			-	R							B			R				,	<u> </u>		B	··· ·		
Pyxidicula moellen			R	F	F	F	F	F	F	F	C	С	C	Ċ	C	F	C	F	F	F	C	C	C	Ċ	C	F	B
Rattravella camaruensis											F			-			-	B	·		F						<u> </u>
Rattravella retundata				1	B				R	-	R							1	B		R			R		-	
Rhaphonels morsiega	F	-			R							B				R						R	-		F	B	B
Rhaphoneis simbirskiana			F		F				F	R	F	F	F	F	B	F	F	F	F	B	F	C	С	C	Ē	F	B
Rhizosolenia hebetata				F · · ·	B					R		B					Ř				· ·	Ť	Ť	Ť	· · ·		+
Solium exsculptum		R	F	F	F	F	F	F	F	F	B	B	F	F	F	R	R	F	F	F	B	B	F	F	F	R	R
Stellarima microtrias	B	F	F	F			r ·		R	R	R	F	F	F	B	B	F	F	B	B	B	F	F	F	B	B	R

GEODIVERSITAS • 1999 • 21 (3)

Palaeogene	siliceous	microfo	ssils of	Volga	Region
			00440 01		

~		Γ	Γ	Г	Г	Γ				m		T	Γ		6		~		Γ	1	Γ		~	-	Ľ	T
8		-	\vdash	m		a	-	-	la	0	m	+	+-	$\left \right $	~		-	~	-	┢	┢	-	~	-	-	╞
0 0		-	-	~	-	-	-			0	~			-	~		-	~		-	-	~	-	ł	-	+
ດ 0	~				-		-	ŀ	0	0			1	-	~			-				-		m		t
1 6	-			0	\vdash	-	-	-	0		-	F			~	-		-		-	-		-		-	-
8			-			-	0				~	-	-		~		-	-	-	-	╞	-	-	~	~	ł
63 6	-	-	-	a	-	G		-	0	0	-	\vdash	┝		r a					\vdash	-	$\left \right $		-	-	╞
64		-	-	1		E	æ	-	0	0		æ			E		L					æ	F			┢
65	-		\vdash	LL.	-	æ			0	- 0	E	L	-		œ		œ		-	-		æ		-	œ	+
99	-	-		L	-	-	-	-	4	0			-		œ		æ			-		-	æ	-	-	
57		н		æ	-	\vdash	æ	┝	L	0	-		-	-	œ	-	ц	æ	-		+	-	E	н	н	-
- 88	-		ш	æ			æ		ш	0		-	-	-	æ	-	æ	æ		-		Œ	E	-	æ	
- 69			ш	æ			œ	-	н	0	Œ				œ		œ	æ			$\left \right $	<u>a</u>	н		e E	1
22		ш ш	æ	E	-	-	-	-	œ	-		-	æ	-	н		-	L	œ	-	œ	-	H	æ	H	
-	_	-	-	Œ		æ	-	-	ш		Œ	┢	æ	-	œ				-	æ	-	-	Ŧ	-	æ	
מ			œ	L		œ	-	-	œ	-	-	æ	E		α		-	L		æ		-	-	н	-	-
73		-	œ		-	æ	-		æ		-	-	-		Ē			ц.	E	Œ	œ	æ	-	-	-	
74		æ	æ	-	-	æ	┢	-	æ		œ	-	-		н	-	-	Ŀ		æ	-		н	æ	-	0
75		_			-	œ		ŀ	œ	œ		œ	-		Œ		-	ш	Œ	æ	-			н		
76					-	ш	F	-	œ			-	-		н		-	œ	-	н	-		-	_	-	0
77					-	н			œ						æ	-	X	œ		œ	æ	æ		н		
78				-		æ		-	н		-	-			Œ		-	æ	E E	æ	-		-	_		
79	-		-			æ	æ	-	H	æ		-			æ			æ	-	œ			œ	œ		
80	_				œ	æ			œ					-	œ			œ		œ	-				-	-
81	-	υ			œ	œ		-	æ		æ			-	æ			ш	æ	æ	æ	æ		æ	-	-
82		υ			ш	æ	-	œ	æ		-			-	œ		-	LL.		æ	L				_	α
83		с 0			ш	œ		æ		æ		œ		-	œ	_	_	ш		æ	υ	æ	-	н		
_			_						-				-						-						_	
oms/ Samples	lassiosira sp. 1	lassiosiropsis wittiana	eratium flos	eratium heibergii	sratium kinkeri	eratium mirabile	eratium sparsipunctata	sratium ventriculosum	acha excavala	acria pileolus	acria regina	nosira spinosa	thiopyxis sp. 1	icofiage/lates	biserna chsymmetrica	Stouth	biseme hestafa hastata	bisema hastata globulata	biseme memos inemils	vocha elongata	vocha fibula	vocha precarentis	iculopsis constricta	iculopsis danica	iculopsis punctilia	initimeie robueta

cies were determined). Different radiolarian species dominate the assemblage in specific stratigraphic intervals. For example, specimens of Spongodiscus americanus Kozlova & Gorbovetz dominate in the lowermost part of section (samples 109-104), Tripodiscinus sengilensis Kozlova in samples 106-101, Spongotrochus aff. helioides (Cleve) in samples 99-88, Tripodiscinus trilobatus Kozlova in samples 87-75, Anthocyrtoma frizzeli Noshimura and Petalospyris foveolata Ehrenberg in samples 65-60. Generally, in the lower part of diatomite unit, representatives of the Spongodiscidae family (genera Spongodiscus and Spongotrochus) and Trissocyclinae family (genus Tripodiscinus) are dominant, and in the upper part of diatomites specimens of the Cyrtidae (genera Diplocyclas, Clathrocyclas and Anthocyrtoma) and of the Spyridae (genus Petalospyris) dominate. The greatest change of the association can be observed at the stratigraphical level of samples 72-67 (Fig. 2), on the boundary between the Tripndiscinus sengilensis and Petalospyris foveolata radiolarian zones.

Diatom assemblages are well preserved and taxonomically diversified too, represented mainly by robust, large frustules of diatoms. About 60 taxa of diatom were determined. The diatom assemblages are dominated by species typical for netitic environment. Fully planktonically living species are represented by genera *Hemiaulus*, *Rhizosolenna*, *Proboscia*, *Thalassiosiropsis* and *Triceratium*.

In the upper part of the section (samples 80-71) a taxonomic turnover in diatom assemblages correlates with relative increase of the *Paralia sulcata* (Ehrenberg) Cleve group, It is possible that these changes testify the transition to the coastal, shallower environment. The same trend is reflected in the increasing of clayey material content in the upper part of the section and in the change of diatomites colour from white to grey.

DISCUSSION

STRATIGRAPHIC ISSUES

The precise age determination of siliceous

	Berg	ggre	en et	al. 199	5	Τ	Silic	0-	Diato	oms	Radio	olaria	
Time	Ser	e	Stage	Calo	areous plankcto	'n	flagel Locker & 198	ates Martini 7	Slielnikova 1991, 1992	Fourtanier 1991 Barron & Baldauf 1995	Kozlova 1994	Riedel & Sanfilippo 1978 Nishimura1992	
51 — 52 — 53 —	EOCENE	early	VPRESIAN	NP 12	CP 10)	Naviculopsis	isenia metrica	Coscinodiscus uralensis	Pyxilla gracillis	Petalospyris fiscella	Bekoma	
54 — 55 —	\sim			NP 10	СР 9	a	constricta	Carb disym			Petalospyris foveolata	bidartensis	ı
56 57 58	NE	late	IN THANETIAN	NP 9 NP 8 NF 7 NP 6	CP 8 CP 7 CP 6 CP 5	a	Navicutopsis (Hemiaulus proteus	Hemiaulus incurvus	Tripodiscinus sengilensis		ngiley section
59 60	ALAEOCE		SELANDIA	NP 5	CP 4		stata		Trinacrla ventriculosa	Hemiaulus	Dentil	Bekoma campechensis	Sei
61 — 62 —	14	ţ	IAN	NP 4	CP 3		isema has			peripterus	Buryella tetradiça		
63 64		ear	DAN	NP 3	CP 2 CP 1b	,	Corb		Innacria helbergiana	Trinacria heibergiana			

FIG. 3. — The stratigraphic position of the diatomites of the Sengiley section and correlation to standard and regional zonal schemes.

microfossils associations from the diatomite unit of the Sengiley section is very important to understand the stratigraphic position of the Middle Volga siliceous sediments (Fig. 3).

Present knowledge of strarigraphic ranges of Palaeocene diatoms and radiolarians is very limited, especially for the epicontinental basins. As a rule sediments do not contain any calcareous plankton and do not have not any palaeomagnetic data.

Besides in the Volga Region, the Buryella tetradica radiolarian zone can be distinguished in the North Precaspian Basin; the Tripadiscinus sengilensis zone can be observed in the Serov Formation of the eastern Ural slope and of the western Siberia; and the Petalospyris foveolata radiolarian zone can be recognised in the Irbit Formation of the eastern Ural slope (Kozlova 1984). These radiolarian zones are thus regional and can be traced across a wide territory.

Radiolarian zones distinguished in this paper were referred to the upper Palaeocene by Kozlova (1994) on the basis of a few species common to the associations from the Gulf of Mexico (Foreman 1973).

We suggest that the Buryella tetradica and Tripodiscinus sengilensis zones are related to the lower Bekoma campechensis zone of the standard radiolarian scale, in regard of the presence of Buryella tetradica Foreman, Thecosphaera rotunda Borissenko, Spangodiscus americanus Kozlova & Gosbovetz, Spongotrochus alucatus Riedel & Sanfilippo and Periviator (?) dumitricai Nishimura. Based on the presence of Diploryclas pseudobicoruna pseudobicorona Nishimura, Spongasteriscus cruciferus Clark & Campbell and Anthocyrtoma (?) frizzelli Nishimura, the Petalospyris *foveolata* zone seems to correspond to the upper part of Bekoma campechensis zone of the Northwest Atlantic and, correspondingly, to the CP5-CP6-lower CP7 nannoplankton zones (Nishimura 1992).

A similar picture is obtained from the diatom stratigraphy. The same succession of diatom assemblages (*Trinacria ventriculosa* and *Hemiaulus proteus* zones) is typical for the whole

region, being reported from the boundary interval between the lower and middle parts of the Lulinvort Formation (Put and Taz River basins) of western Siberia, the Irbit and Seroy formations of the eastern Ural slope (Proshkina-Lavrenko 1974). Unfortunately, the precise age of these regional subdivisions remains unclear, for they can still not be correlated with the standard zonal schemes of calcareous microplankton. Strelnikova (1990, 1992) puts the foregoing zones into the late Palaeocene. Gleser (1994, 1995), the first who distinguished these zones, considered the lower zone as late Palaeocene and upper one as early Eocene. But, it is clear now, that for the subdivision of the Sengiley section, standard diatom zones, which were directly correlated with nannoplankton zones in sections from southern Indian Ocean (Fourtaniet 1991; Barron & Baldauf 1995) can be used (Fig. 3). The taxonomic composition of the upper Hemigulus proteus zone is like that of the Hemiaulus incurvus standard zone. The sharply different assemblage of the lower Trinacria ventriculosa zone allows us to correlate this interval to the Hemiaulus peripterus zone. These standard diatom zones correspond to the NP4-NP11 nannoplankton zones (Fig. 2). However, the presence in all associations of the silicoflagellate Corbisema disymmetrica Bukry, which is known only from the NP4-NP9 interval, allows us to suggest that the Sengiley diatomites are within the Palaeocene.

Thus, in all three (radiolarian, diatom, and silicoflagellate) assemblages, there are a number of stratigraphic markers which can be successfully used for the stratigraphic subdivision of early Palaeogene sediments and for the refinement of Palacocene diatom zonation. These are the diatom species Aulacodiscus suspectus A. Schmidt, Hemiaulus proteus Heiberg, Craspedodiscus moelleri A. Schmidt, Cylindrospira simsi Mitlehner; and the radiolarian species Tripodiscinus sengilensis Kozlova, T. trilobatus Kozlova, T. sibiricus Kozlova, Petalospyris faveolata Ehrenberg, P. fiscella Kozlova, etc. Until now, these radiolarian species have not been found in open ocean sediments.

PALAEOGEOGRAPHIC ISSUES

During the middle-late Palaeocene, the Middle

Volga Region was a shallow-water, highly productive marine basin with siliceous sedimentation. It is obvious that Palaeocene sediments of the Middle Volga Region are accumulated in the great gulf of the epicontinenral sea, via an intensive upwelling process. Distanov (1968) supposed that diatomites may be accumulated in marginal parts of palaeodeltas. It is possible also that diatomite accumulation took place only on topographic highs of subbottom relief.

The main peculiarity of the siliceous microplankton assemblages is their provincialism. The taxonomic composition of the associations differs strongly from coeval oceanic assemblages. Deepsea diatom Palaeocene assemblages, restricted generally to the Southern Hemisphere (Fenner 1991; Fourtanier 1991) differ taxonomically from epicontinental assemblages due to palaeoecological and palaeogeographical differences, and preservation factors. Epicontinental diatom assemblages of the Northern Hemisphere are highly diverse due to high percentages of meroplanktonic species.

Although Palaeocene diatom assemblages from the Southern Hemisphere and Volga Region differ strongly, the presence of common species suggests a connection between these areas of the World Ocean, possibly through the Tethys and East Atlantic. The geography of the connection between Middle Volga Region and West Siberian basins (including the eastern Urals slope), and the North European basins (Fur Formation, Denmark and Sambian Formation, Kaliningrad Region, Russia) with biosilica sedimentation (Strelnikova *et al.* 1978; Fenner 1994; Mitlehner 1996) is not still clear.

Acknowledgements

We would like to thank Prof. J. Meulenkamp (Utrecht University, Netherlands) and Prof. D. Lazarus (Berlin, Germany) which improved the manuscript, Prof. P. De Wever and Dr S. Crasquin-Soleau for general coordination and advice on this work, which is part of the Peri-Tethys Program (Grants 95-11 and 95-96/11). The other sponsor was Russian Science Foundation (Grant 05-95-15002).

REFERENCES

- Barron J. A. & Baldauf J. 1995. Cenozoic marine diatom biostratigraphy and applications to paleoclimatology and paleoceanography in Blome C. D. et al. (eds), Siliceous Microfossib, Paleontological Society Shorr Courses in Paleontology 8: 107-118.
- Berggren W. A., Kent D. V., Swisher C. C. & Aubry M.-P. 1995. — A revised cenozoic geochronology and chronostratigraphy. *Geochronology time scale* and global stratigraphic correlation. SEPM (Society for Sedimentary Geology), special publication 54: 129-211.
- Bjorklund K. R. 1977. Radiolaria from the Norwegian Sea, Leg 38 of the Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project 38: 1101-1108.
- Borisenko N. N. 1960. New radiolaria of the Palacocene of the West Kuban River basin. *Publication of Krasnodar town Oil and Gas Institute* 4: 199-208 [in Russian].
- Bukry D. 1976. Centroic silicoffagellates and coccolith stratigraphy. South Atlantic ocean, Deep Sea Drilling Project Leg 36. *Initial Reports of the Deep Sea Drilling Project* 35: 885-917.
- Clark B. L. & Campbell A. Schmidt 1942. Eocene Radiolarian Faunas from the Mt. Diablo area, California. Geological Society of America Special Paper 39, 112 p.
- Dumitrica P. 1973. Palaeocene radiolaria, DSDP Leg 21. Initial Reports of the Deep-Sea Drilling Project 21: 787-817.
- Fenner J. 1985. Late Cretaceous (o Oligocene planktic diatoms: 713-762, in Bolli H. M., Sauders J. B. Perch-Nielsen K. (eds), *Plankton Stratigraphy*. Cambridge University Press, Cambridge.
- Fenner J. 1991. Taxonomy, stratigraphy, and paleoceanographic implications of Palaeocene diatoms. Proceedings of the Ocean Drilling Program, Scientific Results 114: 123-154.
- 1994. Diatoms of the Fur Formation, their taxonomy and biostratigraphic interpretations. Results from the Harre borehole, Denmark. *Aarhus Geoscience*, Aarhus 1: 99-163.
- Foreman H. 1973. Radiolaria of Leg 10 with systematics and ranges for the families Amphyndacidae, Artostrobiidae, and Theoperidae. Initial Reports of the Deep Sea Drilling Project 10: 407-467.
- Fourtanier E. 1991. Palaeocene and Eocene diatom stratigraphy and raxonomy of Eastern Indian ocean site 752. Proceedings of the Ocean Drilling Program, Scientific Results 114: 171-187.
- Frizzel D. L. & Middour E. S. 1951. Palaeocene radiolaria from Southeastern Missouri. Bulletin of the University of Missouri, School Mines Metallogeny, technical serie, 77, 41 p.
- Gleser Z. I. 1960. Palaeogene silicoflagellates of western Siberia. Stratigraphia i Paleontologia, VSE-

GEI, Informatzioniy sbornik 35: 127-136 [in Russian].

- 1966. Silicoflagellatophyceae, in Gollerbakh M. M. (ed.) Cryptogamic plants of the USSR. Volume 7. Akademy Nauk SSSR, Botanischeskiy Institut, Moskwa-Leningrad, 330 p. [in Russian].
- 1984. The significance of taxonomic studies of diatoms for hiostratigraphy and paleogeography. *Ejegodnik paleontologischeskogo obstehestva* 27: 284-298 [in Russian].
- 1993. New data about the Ulyanovsk Volga Region Lower Palaeogene subdivision and correlation on diatoms and silicoflagellates. Bulletin RMSC on the Centre and South of the Russian Platfurm, Moscow, Publication 3: 120-123 [in Russian].
- 1994. The correlation of Palaeogene diatom flore evolution from epicontinental and occanic áteas. Stratigraphy and geological correlation, Nauka, Moscow 2 (1): 103-107 [in Russian].
- 1995. Diatom and silicoflagellate assemblages as indicators of synchronous occurrence of diatomites of Middle Volga tegion, Denmark and Lower Palaeogene oceanic bottom sediments: 57-63 [in Russian], in Barash M. S. (ed.), Recent and fossil microplankton of the World Ocean. Nauka, Moscow.
- Gleser Z. I., Kuznetsova T. A. & Afanasyeva N. I. 1977. — About age and facial position of the Middle Volga diatomites. Sovetskaya Geologia 8: 113-119 [in Russian].
- Gleser Z. I. & Rubina N. V. 1968, New Palaeogene diatom specie, genus Coscinodiscus Ehrenberg Trudy Tumen Industrial Institute 1: 153-155 [in Russian].
- Gombos A. M. 1977. Palaeogene and Neogene diatoms from the Falkland Plateau and Malvinas Outer Basin: Leg. 36, Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project 36: 575-687.
- Hajos M. 1976. Upper Eocene and lower Oligocene diatomaceae, atchaeomonodaceae, and silicoflagellatae in southern Pacific sediments, DSDP Leg. 29. Initial Reports of the Deep Sea Drilling Project 35: 817-883.
- Hajos M, & Studner H. 1975. Lare Cretaceous archaeomonadaceae, diatomaceae, and silicoflagellatae from the South Pacific Ocean. Deep Sea Drilling Project, Leg. 29, Site 275. Initial Reports of the Deep Sea Drilling Project 29: 913-1009.
- Harwood D. M. 1988. Upper Cretaceous and Lower Palaeocene diatom and silicoflagellates stratigraphy of Seymour Island, eastern Antarctic Peninsula, Geological Society of America 169: 55-129.
- Hasle G. & Sims P. 1986. The diatom genera Stellarima and Symbolophora with comments on the genus Actinoptychus, British Phycological Journal 21: 97-114.
- Hasle G. P. & Syversten E. E. 1985. Thulassiosiropsis, a new diatom genus from the fossil

records. Micropaleontology 31 (1): 82-91.

- Homann M. 1991. Die Diatomeen der Fur-Formation (Altterriar) aus dem Limfjord-Gebiet, Nordjutland/Danemark. *Geologische Jahrbuch* 123, 285 p.
- Jordan R. W. & Priddle J. 1991. Fossil members of the diatom genus Proboscia. Diatom Research 6 (1): 55-61.
- Jousé A, P. 1951. Upper Cretaceus diatoms and silicoflagellates, North Ural. Botanicheskye materialy ordela sporovykh rasteniy, Botanical Institute of Akademia Nauk SSSR 7: 42-65 [in Russian].
- 1955. New species of Palaeogene diatoms. Botanicheskie materialy otdela sporovykh rasteniy, Botanical Institute of Akademia Nauk SSSR 10: 81-103 [in Russian].
- 1979. Diatom biostratigraphic zones of the Eocene. Nowa Hedwigia 64: 427-440.
- 1982. Palaeoceae diatoms and silicoflagellates from the Pacific, Indian and Atlantic oceans: 131-145 [in Russian], in Jousé A. P. & Krasheninnikov V. A. (eds), Morskaya mikropaleotologia. Nauka, Moscow.
- Kozłova G. E. 1978, Zonal subdivision of the Cretaceous/Palacogene boundary levels on planktonic organisms, in Zonal stratigraphy of the boreal Upper Paleozoic and Mezosoic as the base for study of oil-bearing sediments of the North Russia, Siberia and Kazakhstan. Materialy VNIGRI, Leningrad, 181 p. [in Russian].
- 1984. Zonal subdivision of the boreal Palaeogene on radiolarians in Morphology, ecology and evolution of Radiolaria, Materials of the IV European Meeting on radiolaria (Eurorad-IV), Nauka, Leningrad: 196-210 [in Russian].
- 1990. Filogenetic investigations as the base fur zonal scale on radiolatians of the bureal Palaeogene: Z0-81 [in Russian], in Radiolatia in Biostratigraphy, Academy of Sciences of USSR, Sverdlovsk.
- 1994. Radiolarian zonal scale of the boreal Palaeogene. *Micropaleontology* (special publication) 6: 90-93.
- Kozlova G. E. & Gorbovetz A. N. 1966. Upper Cretaceous radiolaria of the West Siberian Basin. Nedra, Leningrad, 159 p. '[in Russian].
- Krotov A. I. & Šhibkova K. G. 1959. New diatom species from the Urals Palaeogene deposits. *Botanicbeskie materialy oidela sporovykb rasteniy*, Botanical Institute of Akademia Nauk SSSR 12: 112-129 [in Russian].
- Leunov G. P. 1961. Main problems of the Russian plate Palaeogene regional struigraphy. Moscow State University, Moscow, 552 p. [in Russian].
- Locker S. & Martini E. 1987. Silicoflagellaten aus einigen russischen Palaogen-Vorkommen. Senckenbergiana leihaea 68 (1/4): 21-67.
- Makarova I. V. (ed.) 1988. The diatoms of the USSR fossil and recent. Volume 2, fasc. 1. Nauka, St.-Petersburg, 116 p. [in Russian].

- 1992. The diatoms of the USSR fossil and recent. Volume 2, fase. 2. Nauka, St.-Petersburg, 125 p. [in Russian].
- Milanovsky E. V. 1940. Geology of the Middle and Lower Volga region. Gostopteckhizdat, Moscow, 276 p. [in Russian].
- Mitlehner A. G. 1995, Cylindrospira, a new diatom genus from the Palaeogene of Denmark with palaeoecological significance. Diatom Research 10: 321-331.
- 1996. Palaeoenvironments in the North sea basin around the Paleocene-Eucene boundary: evidence from diatoms and other siliceous microfossils, in Knox R. W. O'B., Corfield R. M. & Dunay R. E. (eds), Correlation of the Early Palaeogene in Northwest Europe, Geological Society special publication 101: 255-273.
- Mukhina V. V. 1976. Species composition of the Late Palaeocene diatoms and silicoflagellates in the Indian Ocean. *Micropaleontology* 22: 151-158.
- Nishimura A. 1992. Palaeocene radiolarian biostratigraphy in the northwest Atlantic at Site 384, Leg. 43, of the Deep Sea Drilling Project. *Micropaleontology* 38 (4): 317–362.
- Perch-Nielsen K. 1976. New silicoflagellates and silicoflagellate zonation in North European Palacocene and Eocene diatomite. Bulletin of Geological Society of Denmark 25 (1-2): 22-27.
- 1985. Silicoflagellates: 811-846, in Bolli H. M., Sauders J. B. & Perch-Nielsen K. (eds), *Plankton* stratigraphy. Cambridge University Press, Cambridge.
- Petrushevskaya M. G. 1971. Radiolaria of the World Ocean. Investigations of the Marine Fauna. Nauka, Leningrad, 416 p. [in Russian].
- Petrushevskaya M. G. & Kozlova G. E. 1972. Radiolaria. Initial Reports of the Deep Sea Drilling Project 14: 495-654.
- 1979. Descriptions of the genera and species of radiolaria: 86-111 [in Russian], in Strelkov A. A. & Petrushevskaya M. G. (eds), History of the Norwegian Sea Microplankton, Nauka, Leningrad.
- Proshkina-Lavrenko A. J. (ed.) 1949. Diatomoviy Analis, Volume 2. Akademia Nauk SSSR, Botanical Institute, Moscow-Leningrad. 238 p. (in Russian).
- 1974. The diatoms of the USSR fossil and recent.
 Volume 1. Nauka. Leningrad, 403 p. [in Russian].
- Riedel W. R. & Sanfilippo A. 1971. Cenozoic radiolaria from the western tropical Pacific. *Initial Reports of the Deep Sea Drilling Project* 7; 1529-1668.
- Ross R. & Sims P. A. 1985. Some genera of the Biddulphiaceae (diatoms) with interlocking lincking spines. Bulletin of British Museum of Natural History (Botanie) 13 (3): 277-381.
 Sanfilippo A. & Riedet W. R. 1973. — Cenozoic
- Sanfilippo A. & Riedel W. R. 1973. Cenozoic radiolaria. Initial Reports of the Deep Sea Drilling Project 10: 475-811.
- Schrader H.-J. & Fenner J. 1976. Norwegian sea

cenozoic diatom biostratigraphy and taxonomy. *Initial Reports of the Deep Sea Drilling Project* 38 (Part 1): 921-1099.

- Sheshukova-Poretzkay V. S. & Gleser Z. I. 1964. New Palaeocene marine diatoms of the Ukraine: 78-92 [in Russian], *in Novosti Systematiki Nizshikh Rasteniy.* Akademia Nauk SSSR, Botanical Institute, Nauka, Moscow-Leningrad.
- Strelnikova N. I. 1971. New diatom species of Upper Cretaceous sediments of the Eastern slope of the Polar Ural: 41-51 [in Russian], in Novosti Systematiki Nizshikh Rasteniy. Akademia Nauk SSSR, Botanical Institute, Nauka, Moscow-Leningrad.
- 1974. Late Cretaceous diatoms (Western Sibiria). Nauka, Moscow, 203 p. [in Russian].

- 1990. Evolution of diatoms during the Cretaceous and Palaeogene periods: 195-204, *in* Simola H. (ed.), *Proceeding of 10th Diatom Symposium*. Koeltz Scientific books, Koenigstein.
- 1992. *Palaeogene diatoms*. St-Petersbourg University Press, St-Petersburg, 321 p.
- Strelnikova N. I., Kaplan A. A. & Travina M. A. 1978. — Palaeogene diatoms, silicoflagellates, ebridian of Kaliningrad district: 57-66 [in Russian], in Jousé A. P. (ed.), Morskaya micropaleontologia. Nauka, Moscow.
- Strelnikova N. I. & Nikolaev V. A. 1986. The review of genera *Stephanopyxis* and *Pyxidicula* (Bacillariophyta). *Botanischeskyi journal* 71 (7): 950-953 [in Russian].

Submitted for publication on 22 April 1997; accepted on 30 June 1998.

APPENDIX

DIATOMS

Actinoptychus sp.

Aulacodiscus distinguendus Hustedt (1958) – Homann 1991, pl. 7, fig. 4.

Anlacodiscus probabilis A. Schmidt – Homann 1991, pl. 4, figs 3-5 (Fig. 7K).

Aulacodiscus schmidtii Wirt (1886) – Aulacodiscus septus A. Schmidt f. septus A. Schmidt Srtelnikova 1974. pl. 19, figs 1-6, tab. 20, figs 1-5. (Fig. 7F).

Aulacodiscus suspectus A. Schmidt (1876) – Homann 1991: 37, pl. 6, figs 1-5; pl. 7, figs 1-3, 5 [= Coscinodicus josefinus Grunow – Strelnikova et al. 1978. pl. 15, figs 1, 2] [= Coscinodiscus uralensis Jousé – Proshkina-Lavrenko 1949: 73, pl. 24, fig. 4 (Fig. 6K)].

Briggera sibirica (Gtunow) Ross & Sims, 1985: 300, pl. 3, figs 1-7. – Homann 1991: 74, pl. 8, Figs 1-11 [= Biddulphia tuomeyi (Bailey) Roper var. tridenta Jousé – Strelnikova et al. 1978, pl. 17, fig. 5 (Fig. 5D)].

Coscinodiscus anissimovae Gleser & Rubina, 1968: 153, pl. 1, figs 1-6. – Proshkina-Lavrenko 1974, pl. 38, fig. 8.

Coscinodiscus sp. Common occurrence of large *Coscinodiscus* is recorded at the Sengiley section. These belong mostly to *Coscinodiscus oculus iridis* Ehrenberg (1839) group, *Coscinodiscus radiatus* Ehrenberg (1839) group, and *Coscinodiscus argus* Ehrenberg (1838).

Costopyxis antiqua (Jousé) Gleser, 1984: 291 [= Stephanopyxis antiqua Jousé, 1951: 46, pl. 1, fig. 3. – Strelnikova 1974, pl. 3, figs 18-20].

Craspedodisens moelleri A. Schmidt (1893) – Proshkina-Lavrenko 1974, pl. 23, fig. 2. – Homann 1991: 47, pl. 17, figs 1-5 (Fig. 6D).

Cylindrospira simsi Mitlehner, 1995: 323, figs 3-6, 9-18 [= Pyxilla multiseptata Gleser, 1995, pl. 1, fig. 16 (Fig. 6B)].

Eunotogramma variabile Grunow (1883) – Proshkina-Lavrenko 1974, pl. 15, fig. 12 (Fig. 5E). *Eunotogramma weissii* Ehrenberg (1955) – Proshkina-Lavrenko 1974, pl. 5, fig. 6 (Fig. 4A).

Fenestrella antiqua (Grunow) Swatman (1948) – Homann 1991, pl. 18, figs 1, 2, 4, 5.

Grunowiella gemmata (Grunow) Van Heurck (1896) – Fenner 1991, pl. 11, fig. 13 (Fig. 6H). *Grunowiella palaeocaenica* Jousé, 1951: 40-41, pl. 4, fig. 5. – Fenner 1991, pl. 11, figs 1-4 (Fig. 6I).

Hemialus ambiguus Grunow (1884) – Fenner 1994, pl. 6, fig. 17 (Fig. 5B, I).

Hemiaulus arcticus var. bornholmensis Cleve-Euler (1951) – Fenner 1994, pl. 8, Figs 1, 2 (Fig. 5F).

Hemiaulus curvatulus Strelnikova, 1971: 49, pl. 1, figs 12, 13. – Harwood 1988, figs 12, 13 (Fig. 5O, S).

Hemiaulus danicus Grunow (1878) – Homann 1991, pl. 20, figs 1-10 (Fig. 5N).

Hemiaulus frigidus (Grunow) Fenner, 1994: 112, pl. 8, fig. 4 (Fig. 5C).

Hemiaulus incisus Hajos, 1976: 829, pl. 23, figs 4-9, - Fenner 1991, pl. 10, fig. 9 (Fig. 5G).

Hemiaulus incurvus Shibkova in Krotov & Shibkova, 1959: 124, pl. 4, fig. 8. – Gombos 1977, pl. 16, figs 1-7 (Fig. 5A).

Hemiaulus proteus Heiberg, 1863 – Proshkina-Lavrenko 1974, pl. 19, fig. 3. – Homann 1991, pl. 24, figs 15-18 (Fig. 5P, R).

Hemiaulus cf. rossicus Pantocsek, 1889 – Proshkina-Lavrenko 1974, pl. 15, fig. 10 (Fig. 5L, M).

Hyalodiscus radiatus (O' Meara) Grunow var. arctica Grunow (1884) – Homann 1991, pl. 26, figs 3, 6-9.

Kentrodiscus fossilis Pantocsek (1889) – Harwood 1988, figs 16-18 [= *Pterotheca* sp. – Homann 1991, pl. 54, figs 7-9 (Fig. 7G)].

Lisitzinia distanovii Gleser, 1995, pl. 1, fig. 5 (Fig. 4C).

Fig. 4. — **A**, *Eunotogramma weissii* Ehrenberg, sample 100; **B**, **E**, *Trinacria excavata* Heiberg; **B**, sample 68; **E**, sample 58; **C**, *Lisitzinia distanovii* Gleser, sample 69; **D**, *Triceratium mirabile* Jousé, sample 100; **F**, *Triceratium sparsipunctata* Jousé, sample 67; **G**, *Solium exsculptum* Heiberg, sample 58; **H**, *Trinacria regina* Heiberg, sample 61; **I**, *Triceratium ventriculosum* A. S., sample 100; **J**, *Triceratium flos* Ehrenberg, sample 100; **K**, *Triceratium heibergii* Grunow, sample 58. Scale bar: A, B, D, G, I, J, 26.6 μm; C, 13.3 μm; E, 28.5 μm; F, 40 μm; H, 20 μm; K, 23.5 μm.

Fig. 5. — A, Hemiaulus incurvus Shibkova, sample 85; B, I, Hemiaulus ambiguus Grunow, sample 85; C, Hemiaulus frigidus (Grunow) Fenner, sample 67; D, Briggera sibirica (Grunow) Ross & Sims, sample 58; E, Eunotogramma variabile Grunow, sample 88; F, Hemiaulus arcticus var. bornholmensis Cleve-Euler, sample 103; G, Hemiaulus incisus Hajos, sample 58; H, J, K, Hemiaulus sp.; H, sample 103; J, sample 109; K, sample 109; L, M, Hemiaulus Cl. rossicus Pantocsek, sample 67; N, Hemiaulus daricus Grunow, sample 58; G, S, Hemiaulus curvatulus Strelnikova, O, sample 58; S, sample 67; P, R, Hemiaulus proteus Heiberg; P, sample 58; R, sample 61; Q, Hemiaulus sp.; ample 75. Scale bar: A-C, E-N, R, S, 20 µm; D, O-Q, 26.6 µm.

Fig. 6. — A, Rhaphoneis simblrskiana Grunow & Pantocsek, sample 58; B, Cylindrospira simsi Mitlehner, sample 67; C, Pyxidicula ferox (Greville) Strelnikova & Nikolaev, sample 100; D, Craspedodiscus moelleri A. Schmidt, sample 58; E, Pyxidicula turris (Greville & Amott) Strelnikova & Nikolaev, sample 100; F, Thalassiosira sp. 1 sensu Fourtanier, sample 59; G, Pyxidicula sp., sample 74; H, Grunowiella germata (Grunow) Van Heurk, sample 100; I, Grunowiella palaeocaenica Jousé, sample 58; J, Thalassiosiropsis wittiana (Pantocsek) Hasle, sample 100; K, Aulacodiscus suspectus A. Schmidt, sample 58; L, Pyxidicula sp., sample 58; S, Thalassiosiropsis (K, H, K, 16.6 µm; B, F, G, I, 20 µm; C, 13.3 µm; D, J, 26.6 µm; E, 28.5 µm; L, 25 µm.

Odontotropis carinata Grunow (1884) – Homann 1991, pl. 27, figs 5, 7; pl. 28, figs 1-3 [= Odontotropis danicus Debes – Fenner 1985: 734, pl. 14, fig. 11 (Fig. 7I, J).

Odontotropis cristata Grunow (1884) – Homann 1991, pl. 29, figs 1-5.

Paralia crenulata (Grunow) Gleser stat. nov. – Makarova 1992: 50, pl. 41, figs 1-8.

Paralia grunowii Gleser stat. et nom. nov. – Mākārova 1992: 51, pl. 41, figs 9-11; pl. 42.

Paralia sulcata (Ehrenberg) Cleve (1884) – Makarova 1992: 52, pl. 43.

Proboscia cretacea (Hajos & Stradner) Jordan & Priddle, 1991; 56 |= *Rhizosolenia cretacea* Hajos & Stradner, 1975: 929, pl. 7, fig. 1; pl. 31, figs 4-6. – Fenner 1991, pl. 1, figs 4-9].

Pseudopodosira westii (W. Smith) Sheshukova & Gleser, 1964, pl. 1, figs 4, 5.

Pseudopodosira sp. 2 *sensu* Homann, 1991: 134, pl. 54, figs 9, 10.

Pseudostictodiscus angulatus Grunow (1876) – Fenner 1994, pl. 3, figs 12-17 (Fig. 7D).

Pterotheca major Jousé, 1955: 101, pl. 6, fig. 2. – Harwood 1988, figs 16, 18.

Pyxidicula ferox (Greville) Strelnikova & Nikolaev – Makarova 1988: 41, pl. 23, figs 7, 8 (Fig. 6C).

Pyxidicula moelleri (A. Schmidt) Strelnikova & Nikolaev, 1986: 952 [=*Coscinodiscus moelleri* A. Schmidt – Homann 1991, pl. 10, figs 4-8 (Fig. 7A).

Pyxiducula sp. Common occurrence of different Pyxidicula is observed in the upper part of Granoe Ukho section. Most of these belongs to Pyxidicula turris (Greville & Arnott) Strelnikova & Nikolaev, 1986 group and Pyxidicula corona (Ehrenberg) Strelnikova & Nikolaev, 1986 group.

Rattrayella oamaruensis (Grunow) De Toni (1896) – Homann 1991, pl. 33, figs 1-7 (Fig. 7C).

Rattrayella rotundata (Shibkova) Gleser, 1995, pl. 1, fig. 20. (Fig. 7B).

Rhaphoneis morsiana Grunow *in* Pantocsek (1886-89) *em*. Homann 1991: 129, pl. 34, figs 9-12.

Rhaphoneis simbirskiana Grunow *in* Pantocsek (1886-89) – Proshkina-Lavrenko 1974, pl. 15, fig. 15 (Fig. 6A).

Rhizosolenia hebetata Bailey (1856) – Homann 1991, pl. 36, figs 5, 11, 12.

Solium exsculptum Heiberg (1863) – Homann 1991, tf. 37, figs 1, 3, 5-7 [= Trinacria exsculpta (Heiberg) Hust. – Mukhina 1976, pl. 2, fig. 7 (Fig. 4G).

Stellarima microtrias (Ehrenberg) Hasle & Sims, 1986: 11, figs 18-27.

Thalassiosira sp. 1 sensu Thalassiosira ? sp. 1 sensu Fourranier, 1991, pl. 1, fig. 12 [= Genus and specie indet. – Schrader & Fenner 1976, pl. 33, fig. 7 (Fig. 6F)].

Thalassiosiropsis wittiana (Pantocsek) Hasle, Hasle & Syversten, 1985, 89 f, Abb. 1-41. – Homann 1991, pl. 37, figs 8-10 (Fig. 6J).

Triceratium flos Ehrenberg (1885) - Homann 1991, pl. 44, figs 1, 2, 6 (Fig. 4J).

Triceratium heibergii sensu Gombos, 1977, pl. 1, figs 1-12 [= *Triceratium caudatum* Witt, Proshkina-Lavrenko, 1974, pl. 15, fig.] [= *Trinacria muricata* Gleser, 1995, pl. 1, fig. 4 (Fig. 4K)].

Triceratinm kinkeri A. Schmidt (1874-1959) – Prosh-kina-Lavrenko 1974, pl. 23, fig. 3.

Triceratium mirabile Jousé *in* Proshkina-Lavrenko, 1949: 166, pl. 6, fig. 5 – Fenner 1991, pl. 9, figs 7-10 (Fig. 4D).

Triceratinm sparsipunctata Jousé, *in* Proshkina-Lavrenko 1949: 169, pl. 64, fig. 6 (Fig. 4F).

Trinacria ventriculosa (A. Schmidt) Gleser, in Proshkina-Lavrenko 1974, pl. 18, fig. 12 (Fig. 41).

Trinacria excavata Heiberg (1863) – Homann 1991, pl. 46, figs 1-8; pl. 47, figs 1-6. (Fig. 4B, E).

Trinacria pileolus (Ehrenberg) Grunow (1884) – Gombos 1977, pl. 37, figs 3, 4.

Trinacria regina Heiberg (1863) *em.* Homann 1991: 124, pl. 50, figs 1-7; pl. 51, figs 1-7. – Proshkina-Lavrenko 1974, pl. 23, fig. 6 (Fig. 4H).

Trochosira spinosa Kitton (1871) – Homann 1991, pl. 17, figs 6-13.

Fig. 7. — A. Pyxidicula moelleri (A. Schmidt) Strelnikova & Nikolaev, sample 58; B, Rattrayella rotundata (Shibkova) Gleser, sample 79; C, Rattrayella oamaruensis (Grunow) De Toni, sample 87; D, Pseudostictodiscus angulatus Grunow, sample 74; E, Pyxidicula sp., sample 58; F, Aulacodiscus schmidtii Witt, sample 74; G, Kentrodiscus fossilis Pantocsek, sample 94; H, Pterotheca sp., sample 100; I, J, Odontotropis carinata Grunow, sample 100; K, Aulacodiscus probabilis A. Schmidt, sample 88. Scale bar: A, 14.2 µm; B-D, G, K, 20 µm; E, 40 µm; F, 13.3 µm; H-J, 26.6 µm.

Fig. 8. — A-D, Naviculopsis constricta (Schulz) Frenguelli; A, sample 74; B, sample 58; C, sample 67; D, sample 58; E, Naviculopsis punctilia Perch-Nielsen, sample 67; G, Dictyocha precarentis Bukry, sample 88; H, Corbisema hastata hastata (Lemmermann) Bukry, sample 108; I, Corbisema hastata globulata Bukry, sample 58; J, Corbisema disymmetrica var. communis Bukry, sample 109; K, L, Dictyocha elongata Gleser; K, sample 88; L, sample 95; M, N, Naviculopsis robusta Deflandre; M, sample 74; N, sample 109. Scale bar: A-C, E-N, 20 µm; D, 26.6 µm.

Xanthiopyxis sp. 1-form 7 sensu Homann 1991, pl. 57, figs 14, 15.

SILICOFLAGELLATES

Corbisema disymmetrica var. communis Bukry, 1976: 891, pl. 1, figs 5-9. – Perch-Nielsen 1985, fig. 11(8) [= Dictyocha navicula Ehrenberg, Gleser 1966: 251, pl. 9, figs 4, 5; text-fig. 6(6)] [= Corbisema naviculoidea (Frenguelli) Perch-Nielsen, 1976: 33, fig. 7, 19, 22 (Fig. 8J)].

Corbisema hastata hastata (Lemmermann) Bukry, 1976: 892, pl. 4, figs 9-16. – Perch-Nielsen 1985, fig. 11 (22, 23) (Fig. 8H).

Corbisema hastata globulata Bukry, 1976: 892, pl. 4, figs 7, 8 (Fig. 81),

Corbisema inermis inermis (Lemmermann) Bukry, 1976: 892, pl. 5, figs 1-3.

Dictyocha elongata Gleser, 1960: 131, 132, tabl. 1, pl. 2, figs 16-20. – Perch-Nielsen 1976, fig. 2 (Fig. 8K, L).

Dictyocha fibula Ehrenberg (1839) – Perch-Nielsen 1985, fig. 15 (17).

Dictyocha precarentis Bukry, 1976: 894, pl. 6, figs 6-13; pl. 7, figs 1-3 (Fig. 8G).

Naviculopsis constricta (Schulz) Frenguelli, (1940) – Perch-Nielsen 1985, figs 26 (6, 7) (Fig. 8A-D).

Naviculopsis daniea Perch-Nielsen, 1976: 35, figs 5, 6, 21. – Gleser 1995, pl. 1, fig. 27 (Fig. 8F).

Naviculopsis punctilia Perch-Nielsen, 1976: 36, figs 26, 27; 1985, fig. 26 (33) (Fig. 8E).

Naviculopsis robusta Deflandre (1950) – Gleser 1995, pl. 1, fig. 29 (Fig. 8M, N).

RADIOLARIA

Anthocyrtoma (?) frizzeli Nishimura, 1992: 332, pl. 9, fig. 13, 14; pl. 13, fig. 8.

Botryometra (?) osha Kozlova, 1978: 95, 96, pl. VI, fig. 9, 10; pl. XIX, fig. 3.

Buryella tetradica Foreman, 1973: 443, 8, figs 4, 5; pl. 9, figs 13, 14. – Kozlova 1984, pl. XII, fig. 16 |= *Lithocampium* sp. A – Riedel & Sanfilippo 1971, pl. 7, fig. 12],

Clathrocyclas elegans (Lipman, 1958) – Kozlova 1978, pl. 17, figs 1, 4, 5. – Kozlova 1990: 78, pl. XII, fig. 14. – Petrushevskaya & Kozlova 1979, fig. 500 [= Theocorys sporta Kozlova in Kozlova, Gorbovetz 1966: 11, pl. 17, fig. 8.

Clathrocyclas extensa Clark & Campbell, 1942: 85, pl. 8, fig. 11. – Bjotklund 1977, pl. 21, fig. 4. – Kozlova & Gorbovetz 1966, pl. 21, fig. 8. – Petrushevskaya & Kozlova 1979: 131, fig. 38b, 504.

Clathrocyclas lipmanae Kozlova, 1978: 121, pl. 6, fig. 3, 6, pl. 17, fig. 12, pl. 19, fig. 8. – Kozlova 1990: 78, pl. XII, fig. 21.

Clathrocyclas longispina Clark & Campbell, 1942 – Kozlova 1978, pl. XVII.

Diplocyclas cornuta runjevae Kozlova, 1978: 124, pl. VI, fig. 1 ,4, pl. XIX, fig. 6.

Diplocyclas pseudobicorona pseudobicorona Nishimura, 1992: 340, pl. 4, figs 4-6, pl. 13, fig. 14.

Larnacalpis (?) smili Middour-Kozlova 1978, pl. 1X, figs 3, 5.

Lophophaena curta Kozlova, 1978, pl. V, figs 7, 8; pl. XIX, fig. 4.

Peritiviator (?) dumitricae Nishimura, 1992: 328, pl. 1. fig. 13-16, pl. 11, figs 11, 12.

Petalospyris fiscella (Kozlova) – Tetraspyris fiscella Kozlova in Kozlova & Gorbovetz 1966: 92, tabl. XV, fig. 1 [= Hexaspyris sp. – Petrushevskaya & Kozlova 1972, pl. 40, fig. 6] [= Hexaspyris fiscella (Kozlova) – Kozlova 1978: 89, pl. VIII, fig. 6]. Petalospyris foveolata Ehrenberg & Kozlova, 1978: 89-90, pl. 6, fig. 8; pl. 8, fig. 10; pl. 19, figs 9-13.

Petalospyris tumidula Kozlova in Kozlova & Gorboverz, 1966: 97, pl. XV, figs 10, 11.

Phormocyrtis reticula (Kozlova) [= *Theocorys reticula* Kozlova *in* Kozlova & Gorbovetz, 1966: 110, pl. XVII, fig. 7].

Plectodiscus totchilinae Kozlova, 1984: 206-207, pl. X, fig. 13.

Spongasteriscus cruciferus Clark & Campbell, 1942 – Kozlova 1984, pl. X, fig. 16.

Spongodiscus americanus Kozlova *in* Kozlova & Gorbovetz, 1966, tabl. XIV, figs 1, 2. – Sanfilippo & Riedel 1973: 524, pl. 27, fig. 11; pl. 28, fig. 9 [= *Spongodiscus americanus americanus* Kozlova, 1978: 77, tabl. XIV, fig. 3].

Spongomelissa numa callosa Kozlova, 1978: 101, pl. XII, fig. 2; pl. XIX, fig. 2.

Spongomelissa numa numa Kozlova, 1978: 100, 101, pl. XII, figs 4, 5.

Spongomelissa (?) ternaria Kozlova, 1978: 101, 102, pl. VIII, fig. 1; pl. XIX, fig. 1.

Spongotrochus alveatus Riedel & Sanfilippo *in* Sanfilippo & Riedel, 1973: 525, pl. 13, figs 4, 5; pl. 30, figs 3, 4. – Kozlova 1984, pl. XI, fig. 6.

Spongotrochus helioides (Cleve) – [= Spongotrochus sp. aff. Trochodiscus helioides Cleve – Kozlova 1978: 82, 83, pl. 16, fig. 6].

Spongotrochus nativus praecox Kozlova, 1978:

78, pl. 14, fig. 1.

Spongotrochus paciferus antiquus Kozlova, 1978, tabl. XVI, figs 4, 5.

Spongotrochus puter Kozlova, 1978: 82, pl. 5, fig. 10.

Thecosphaerella rotunda Borissenko, 1960: 222, pl. 1, fig. 3, pl. 3, figs 2, 3. – Sanfilippo & Riedel 1973: 522, pl. 26, fig. 3 [= *Thecosphaera melitomma* Kozlova *in* Kozlova & Gorbovetz 1966: 52, pl. VII, figs 7, 8].

Tripodiscinus sengilensis Kozlova, 1978: 104, 105, pl. V, figs 1-5; 1984: 207, 208, pl. XII, 20.

Tripodiscinus sibiricus Kozlova, 1978: 103, 104, pl. XII, fig. 3; 1984: 208, pl. XII, fig. 4 [= *Tripodiscinus tumulosa* (Kozlova) – Petrushevskaya 1971, figs 33-V-VI] [= *Tripodiscinum* sp. A – Petrushevskaya 1971, figs XI-XII].

Tripodiscinus trilobatus Kozlova, 1978, pl. X, figs 4, 5.